An accurate and precise grey box model of a low-power lithium-ion battery and capacitor/supercapacitor for accurate estimation of state-of-charge

10Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

Abstract

The fluctuating nature of power produced by renewable energy sources results in a substantial supply and demand mismatch. To curb the imbalance, energy storage systems comprising batteries and supercapacitors are widely employed. However, due to the variety of operational conditions, the performance prediction of the energy storage systems entails a substantial complexity that leads to capacity utilization issues. The current article attempts to precisely predict the performance of a lithium-ion battery and capacitor/supercapacitor under dynamic conditions to utilize the storage capacity to a fuller extent. The grey box modeling approach involving the chemical and electrical energy transfers/interactions governed by ordinary differential equations was developed in MATLAB. The model parameters were extracted from experimental data employing regression techniques. The state-of-charge (SoC) of the battery was predicted by employing the extended Kalman (EK) estimator and the unscented Kalman (UK) estimator. The model was eventually validated via loading profile tests. As a performance indicator, the extended Kalman estimator indicated the strong competitiveness of the developed model with regard to tracking of the internal states (e.g., SoC) which have first-order nonlinearities.

Cite

CITATION STYLE

APA

Navid, Q., & Hassan, A. (2019). An accurate and precise grey box model of a low-power lithium-ion battery and capacitor/supercapacitor for accurate estimation of state-of-charge. Batteries, 5(3). https://doi.org/10.3390/batteries5030050

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free