Downsizing electrode architectures have significant potential for microscale energy storage devices. Asymmetric micro-supercapacitors play an essential role in various applications due to their high voltage window and energy density. However, efficient production and sophisticated miniaturization of asymmetric micro-supercapacitors remains challenging. Here, we develop a maskless ultrafast fabrication of multitype micron-sized (10 × 10 μm2) micro-supercapacitors via temporally and spatially shaped femtosecond laser. MXene/1T-MoS2 can be integrated with laser-induced MXene-derived TiO2 and 1T-MoS2-derived MoO3 to generate over 6,000 symmetric micro-supercapacitors or 3,000 asymmetric micro-supercapacitors with high-resolution (200 nm) per minute. The asymmetric micro-supercapacitors can be integrated with other micro devices, thanks to the ultrahigh specific capacitance (220 mF cm−2 and 1101 F cm−3), voltage windows in series (52 V), energy density (0.495 Wh cm−3) and power density (28 kW cm−3). Our approach enables the industrial manufacturing of multitype micro-supercapacitors and improves the feasibility and flexibility of micro-supercapacitors in practical applications.
CITATION STYLE
Yuan, Y., Li, X., Jiang, L., Liang, M., Zhang, X., Wu, S., … Qu, L. (2023). Laser maskless fast patterning for multitype microsupercapacitors. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-39760-3
Mendeley helps you to discover research relevant for your work.