Abstract
We study a quantum random walk on A(SU(n)), the von Neumann algebra of SU(n), obtained by tensoring the basic representation of SU(n). Two classical Markov chains are derived from this quantum random walk, by restriction to commutative subalgebras of A(SU(n)), and the main result of the paper states that these two Markov chains are related by means of Doob's h-processes. © 1991 Springer-Verlag.
Cite
CITATION STYLE
APA
Biane, P. (1991). Quantum random walk on the dual of SU (n). Probability Theory and Related Fields, 89(1), 117–129. https://doi.org/10.1007/BF01225828
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.
Already have an account? Sign in
Sign up for free