Abstract
We performed high-resolution numerical simulations of a turbulent flow driven by an oscillating uniform pressure gradient. The purpose was to investigate the influence of a reduced water depth h on the structure and dynamics of the turbulent boundary layer and the transition towards a fully turbulent flow. The study is motivated by applications of oscillatory flows, such as tides, in which h is of the same order of magnitude as the thickness of the turbulent boundary layer δ. It was found that, if h∼ δ, the turbulent flow is characterized by (1) an increase of the magnitude of the surface velocity, (2) an increase in the magnitude of the wall shear stress and (3) a phase lead of the velocity profiles, all with respect to the reference case for which h≫ δ. These results are in agreement with analytical solutions for a laminar oscillatory flow. Nevertheless, if the value of the Reynolds number is too small and h∼ δ, the flow relaminarizes.
Author supplied keywords
Cite
CITATION STYLE
Kaptein, S. J., Duran-Matute, M., Roman, F., Armenio, V., & Clercx, H. J. H. (2019). Effect of the water depth on oscillatory flows over a flat plate: from the intermittent towards the fully turbulent regime. Environmental Fluid Mechanics, 19(5), 1167–1184. https://doi.org/10.1007/s10652-019-09671-3
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.