Structural analysis of conserved oligomeric Golgi complex subunit 2

40Citations
Citations of this article
32Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The conserved oligomeric Golgi (COG) complex is strongly implicated in retrograde vesicular trafficking within the Golgi apparatus. Although its mechanism of action is poorly understood, it has been proposed to function by mediating the initial physical contact between transport vesicles and their membrane targets. An analogous role in tethering vesicles has been suggested for at least six additional large multisubunit complexes, including the exocyst, a complex essential for trafficking to the plasma membrane. Here we report the solution structure of a large portion of yeast Cog2p, one of eight subunits composing the COG complex. The structure reveals a six-helix bundle with few conserved surface features but a general resemblance to recently determined crystal structures of four different exocyst subunits. This finding provides the first structural evidence that COG, like the exocyst and potentially other tethering complexes, is constructed from helical bundles. These structures may represent platforms for interaction with other trafficking proteins including SNAREs (soluble N-ethylmaleimide factor attachment protein receptors) and Rabs. © 2007 by The American Society for Biochemistry and Molecular Biology, Inc.

Cite

CITATION STYLE

APA

Cavanaugh, L. F., Chen, X., Richardson, B. C., Ungar, D., Pelczer, I., Rizo, J., & Hughson, F. M. (2007). Structural analysis of conserved oligomeric Golgi complex subunit 2. Journal of Biological Chemistry, 282(32), 23418–23426. https://doi.org/10.1074/jbc.M703716200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free