A cyclic heptapeptide-based hydrogel boosts the healing of chronic skin wounds in diabetic mice and patients

32Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The combined use of peptides, nanomaterials, and hydrogels is a promising strategy for chronic skin wound healing, which remains a huge clinical challenge. Here, we optimized the RL-QN15 peptide, which was shown to be a pro-healing drug candidate in our previous research, to obtain the cyclic heptapeptide (CyRL-QN15) with considerable therapeutic potency against skin wounds. Furthermore, a Zn2+-crosslinked sodium alginate (ZA) hydrogel containing hollow polydopamine (HPDA) nanoparticles loaded with CyRL-QN15 (HPDAlCyRL-QN15/ZA hydrogel) was prepared and characterized, which significantly enhanced the pro-healing potency of CyRL-QN15. At the cellular level, this nontoxic hydrogel accelerated the proliferation, migration, tube formation, and scratch healing of skin cells, regulated the secretion of cytokines from macrophages, directly scavenged free radicals, and decreased reactive oxygen species. Moreover, the HPDAlCyRL-QN15/ZA hydrogel significantly accelerated the healing of full-thickness skin wounds in type 2 diabetic mice by promoting the transition of macrophages to the M2 phenotype to reduce inflammation and cause re-epithelialization, formation of granulation tissue, deposition of collagen, and angiogenesis. Of note, the hydrogel also facilitated wound healing of diabetic patient skin cultured ex vivo. Overall, the HPDAlCyRL-QN15/ZA hydrogel presents a novel therapeutic strategy for clinical chronic skin wound (diabetic ulcer) healing.

Cite

CITATION STYLE

APA

Fu, Z., Sun, H., Wu, Y., Li, C., Wang, Y., Liu, Y., … Yang, X. (2022). A cyclic heptapeptide-based hydrogel boosts the healing of chronic skin wounds in diabetic mice and patients. NPG Asia Materials, 14(1). https://doi.org/10.1038/s41427-022-00444-x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free