Synthesis of iminosugars 1, 2, 3a, and 4a and N-alkyl (ethyl, butyl, hexyl, octyl, decyl, and dodecyl) derivatives 3b-g and 4b-g spiro-linked with morpholine-fused 1,2,3-triazole is described. Conformation of the piperidine ring in each spiro-iminosugar was evaluated by 1H NMR spectroscopy, and conformational change in N-alkylated compounds 4b-g with respect to parent spiro-iminosugar 4a is supported by density functional theory calculations. Out of 16 new spiro-iminosugars, the spiro-iminosugars 3a (IC50 = 0.075 μM) and 4a (IC50 = 0.036 μM) were found to be more potent inhibitors of α-glucosidase than the marketed drug miglitol (IC50 = 0.100 μM). In addition, 3a (minimum inhibition concentration (MIC) = 0.85 μM) and 4a (MIC = 0.025 μM) showed more potent antifungal activity against Candida albicans than antifungal drug amphotericin b (MIC = 1.25 μM). In few cases, the N-alkyl derivatives showed increase of α-glucosidase inhibition and enhancement of antifungal activity compare to the respective parent iminosugar. The biological activities were further substantiated by molecular docking studies.
CITATION STYLE
Chavan, S. R., Gavale, K. S., Khan, A., Joshi, R., Kumbhar, N., Chakravarty, D., & Dhavale, D. D. (2017). Iminosugars Spiro-Linked with Morpholine-Fused 1,2,3-Triazole: Synthesis, Conformational Analysis, Glycosidase Inhibitory Activity, Antifungal Assay, and Docking Studies. ACS Omega, 2(10), 7203–7218. https://doi.org/10.1021/acsomega.7b01299
Mendeley helps you to discover research relevant for your work.