Dasatinib blocks transcriptional and promigratory responses to transforming growth factor-beta in pancreatic adenocarcinoma cells through inhibition of Smad signalling: Implications for in vivo mode of action

32Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: We have previously shown in pancreatic ductal adenocarcinoma (PDAC) cells that the SRC inhibitors PP2 and PP1 effectively inhibited TGF-β1-mediated cellular responses by blocking the kinase function of the TGF-β type I receptor ALK5 rather than SRC. Here, we investigated the ability of the clinically utilised SRC/ABL inhibitor dasatinib to mimic the PP2/PP1 effect. Methods: The effect of dasatinib on TGF-β1-dependent Smad2/3 phosphorylation, general transcriptional activity, gene expression, cell motility, and the generation of tumour stem cells was measured in Panc-1 and Colo-357 cells using immunoblotting, reporter gene assays, RT-PCR, impedance-based real-time measurement of cell migration, and colony formation assays, respectively. Results: In both PDAC cell lines, dasatinib effectively blocked TGF-β1-induced Smad phosphorylation, activity of 3TPlux and pCAGA(12)-luc reporter genes, cell migration, and expression of individual TGF-β1 target genes associated with epithelial-mesenchymal transition and invasion. Moreover, dasatinib strongly interfered with the TGF-β1-induced generation of tumour stem cells as demonstrated by gene expression analysis and single cell colony formation. Dasatinib also inhibited the high constitutive migratory activity conferred on Panc-1 cells by ectopic expression of kinase-active ALK5. Conclusions: Our data suggest that the clinical efficiency of dasatinib may in part be due to cross-inhibition of tumour-promoting TGF-β signalling. Dasatinib may be useful as a dual TGF-β/SRC inhibitor in experimental and clinical therapeutics to prevent metastatic spread in late-stage PDAC and other tumours.

Cite

CITATION STYLE

APA

Bartscht, T., Rosien, B., Rades, D., Kaufmann, R., Biersack, H., Lehnert, H., … Ungefroren, H. (2015). Dasatinib blocks transcriptional and promigratory responses to transforming growth factor-beta in pancreatic adenocarcinoma cells through inhibition of Smad signalling: Implications for in vivo mode of action. Molecular Cancer, 14(1). https://doi.org/10.1186/s12943-015-0468-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free