Lateral Orbitofrontal Cortical Modulation on the Medial Prefrontal Cortex-Amygdala Pathway: Differential Regulation of Intra-Amygdala GABAA and GABAB Receptors

3Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The basolateral complex of the amygdala receives inputs from neocortical areas, including the medial prefrontal cortex and lateral orbitofrontal cortex. Earlier studies have shown that lateral orbitofrontal cortex activation exerts an inhibitory gating on medial prefrontal cortex-amygdala information flow. Here we examined the individual role of GABAA and GABAB receptors in this process. Methods: In vivo extracellular single-unit recordings were done in anesthetized rats. We searched amygdala neurons that fire in response to medial prefrontal cortex activation, tested lateral orbitofrontal cortex gating at different delays (lateral orbitofrontal cortex-medial prefrontal cortex delays: 25, 50, 100, 250, 500, and 1000 milliseconds), and examined differential contribution of GABAA and GABAB receptors with iontophoresis. Results: Relative to baseline, lateral orbitofrontal cortex stimulation exerted an inhibitory modulatory gating on the medial prefrontal cortex-amygdala pathway and was effective up to a long delay of 500 ms (long-delay latencies at 100, 250, and 500 milliseconds). Moreover, blockade of intra-amygdala GABAA receptors with bicuculline abolished the lateral orbitofrontal cortex inhibitory gating at both short-(25 milliseconds) and long-delay (100 milliseconds) intervals, while blockade of GABAB receptors with saclofen reversed the inhibitory gating at long delay (100 milliseconds) only. Among the majority of the neurons examined (8 of 9), inactivation of either GABAA or GABAB receptors during baseline did not change evoked probability per se, suggesting that local feed-forward inhibitory mechanism is pathway specific. Conclusions: Our results suggest that the effect of lateral orbitofrontal cortex inhibitory modulatory gating was effective up to 500 milliseconds and that intra-amygdala GABAA and GABABreceptors differentially modulate the short- A nd long-delay lateral orbitofrontal cortex inhibitory gating on the medial prefrontal cortex-amygdala pathway.

Cite

CITATION STYLE

APA

Chang, C. H. (2017). Lateral Orbitofrontal Cortical Modulation on the Medial Prefrontal Cortex-Amygdala Pathway: Differential Regulation of Intra-Amygdala GABAA and GABAB Receptors. International Journal of Neuropsychopharmacology, 20(7), 602–610. https://doi.org/10.1093/ijnp/pyx027

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free