Applying time-dependent attributes to represent demand in road mass transit systems

2Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

The development of efficient mass transit systems that provide quality of service is a major challenge for modern societies. To meet this challenge, it is essential to understand user demand. This article proposes using new time-dependent attributes to represent demand, attributes that differ from those that have traditionally been used in the design and planning of this type of transit system. Data mining was used to obtain these new attributes; they were created using clustering techniques, and their quality evaluated with the Shannon entropy function and with neural networks. The methodology was implemented on an intercity public transport company and the results demonstrate that the attributes obtained offer a more precise understanding of demand and enable predictions to be made with acceptable precision.

Cite

CITATION STYLE

APA

Cristóbal, T., Padrón, G., Lorenzo-Navarro, J., Quesada-Arencibia, A., & García, C. R. (2018). Applying time-dependent attributes to represent demand in road mass transit systems. Entropy, 20(2). https://doi.org/10.3390/e20020133

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free