High throughput proteomic exploration of hypothermic preservation reveals active processes within the cell associated with cold ischemia kinetic

2Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

The demand for organs to be transplanted increases pressure on procurement centers, to the detriment of organ quality, increasing complications. New preservation protocols are urgently needed, requiring an in-depth understanding of ischemia-reperfusion mechanisms. We performed a proteomic analysis using LC-MS/MS-TOF data analyzed through R software and Cytoscape's ClueGO application, comparing the proteome of kidney endothelial cells, key cell type, subjected to 3, 6, 12, 19, and 24 h of cold ischemia and 6 h reperfusion. Critical pathways such as energy metabolism, cytoskeleton structure/transport system, and gene transcription/translation were mod-ulated. Important time windows were revealed: a—during the first 3 h, central proteins were up-regulated within these pathways; b—the majority of these upregulations were maintained until 12 h cold ischemia time (CIT); c—after that time, the overall decrease in protein expression was ob-served; d—at reperfusion, proteins expressed in response to cold ischemia were all downregulated. This shows that cold ischemia is not a simple slowing down of metabolism, as deep changes take place within the proteome on major pathways. Time-sensitive expression of key protein reveals possible quality biomarkers as well as potential targets for new strategies to maintain or optimize organ quality.

Cite

CITATION STYLE

APA

Pasini-Chabot, O., Vincent, J., Pape, S. L., Lepoittevin, M., Kaaki, W., Woillard, J. B., … Thuillier, R. (2021). High throughput proteomic exploration of hypothermic preservation reveals active processes within the cell associated with cold ischemia kinetic. International Journal of Molecular Sciences, 22(5), 1–32. https://doi.org/10.3390/ijms22052384

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free