Organic molecular tracers in the atmospheric aerosols from Lumbini, Nepal, in the northern Indo-Gangetic Plain: Influence of biomass burning

Citations of this article
Mendeley users who have this article in their library.


To better understand the characteristics of biomass burning in the northern Indo-Gangetic Plain (IGP), total suspended particles were collected in a rural site, Lumbini, Nepal, during April 2013 to March 2014 and analyzed for the biomass burning tracers (i.e., levoglucosan, mannosan, vanillic acid). The annual average concentration of levoglucosan was 734±1043 ngm-3 with the maximum seasonal mean concentration during postmonsoon season (2206±1753 ngm-3), followed by winter (1161±1347 ngm-3), pre-monsoon (771±524 ngm-3) and minimum concentration during monsoon season (212±279 ngm-3). The other biomass burning tracers (mannosan, galactosan, p-hydroxybenzoic acid, vanillic acid, syringic acid and dehydroabietic acid) also showed the similar seasonal variations. There were good correlations among levoglucosan, organic carbon (OC) and elemental carbon (EC), indicating significant impact of biomass burning activities on carbonaceous aerosol loading throughout the year in Lumbini area. According to the characteristic ratios, levoglucosan / mannosan (lev / man) and syringic acid / vanillic acid (syr / van), we deduced that the high abundances of biomass burning products during nonmonsoon seasons were mainly caused by the burning of crop residues and hardwood while the softwood had less contribution. Based on the diagnostic tracer ratio (i.e., lev / OC), the OC derived from biomass burning constituted large fraction of total OC, especially during post-monsoon season. By analyzing the MODIS fire spot product and 5-day airmass back trajectories, we further demonstrated that organic aerosol composition was not only related to the local agricultural activities and residential biomass usage but also impacted by the regional emissions. During the post-monsoon season, the emissions from rice residue burning in western India and eastern Pakistan could impact particulate air pollution in Lumbini and surrounding regions in southern Nepal. Therefore, our finding is meaningful and has a great importance for adopting the appropriate mitigation measures, not only at the local level but also by involving different regions and nations, to reduce the biomass burning emissions in the broader IGP region nations.




Wan, X., Kang, S., Li, Q., Rupakheti, D., Zhang, Q., Guo, J., … Cong, Z. (2017). Organic molecular tracers in the atmospheric aerosols from Lumbini, Nepal, in the northern Indo-Gangetic Plain: Influence of biomass burning. Atmospheric Chemistry and Physics, 17(14), 8867–8885.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free