Interplay of spin-orbit coupling and superconducting correlations in germanium telluride thin films

19Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

There is much current interest in combining superconductivity and spin-orbit coupling in order to induce the topological superconductor phase and associated Majorana-like quasiparticles which hold great promise towards fault-tolerant quantum computing. Experimentally these effects have been combined by the proximity-coupling of super-conducting leads and high spin-orbit materials such as InSb and InAs, or by controlled Cu-doping of topological insu-lators such as Bi2Se3. However, for practical purposes, a single-phase material which intrinsically displays both these effects is highly desirable. Here we demonstrate coexisting superconducting correlations and spin-orbit coupling in molecular-beam-epitaxy-grown thin films of GeTe. The former is evidenced by a precipitous low-temperature drop in the electrical resistivity which is quelled by a magnetic field, and the latter manifests as a weak antilocalisation (WAL) cusp in the magnetotransport. Our studies reveal several other intriguing features such as the presence of two-dimensional rather than bulk transport channels below 2 K, possible signatures of topological superconductivity, and unexpected hysteresis in the magnetotransport. Our work demonstrates GeTe to be a potential host of topological SC and Majorana-like excitations, and to be a versatile platform to develop quantum information device architectures.

Cite

CITATION STYLE

APA

Narayan, V., Nguyen, T. A., Mansell, R., Ritchie, D., & Mussler, G. (2016). Interplay of spin-orbit coupling and superconducting correlations in germanium telluride thin films. Physica Status Solidi - Rapid Research Letters, 10(3), 253–259. https://doi.org/10.1002/pssr.201510430

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free