Customers are increasingly using online channels to buy products. For e-commerce companies, this offers new opportunities to tailor the shopping experience to customers' needs. Therefore, it is of great importance for a company to know their customers' intentions while browsing their webpage. A major challenge is the real-time analysis of a customer's intention during browsing sessions. To this end, a representation of the customer's browsing behavior must be retrieved from their live interactions on the webpage. Typically, characteristic behavioral features are extracted manually based on the knowledge of marketing experts. In this paper, we propose a customer embedding representation that is based on the customer's click-events recorded during browsing sessions. Thus, our approach does not use manually extracted features and is not based on marketing expert domain knowledge, which makes it transferable to different webpages and different online markets. We demonstrate our approach using three different e-commerce datasets to successfully predict whether a customer is going to purchase a specific product. For the prediction, we utilize the customer embedding representations as input for different machine learning models. We compare our approach with existing state-of-the-art approaches for real-time purchase prediction and show that our proposed customer representation with an LSTM predictor outperforms the state-of-the-art approach on all three datasets. Additionally, the creation process of our customers' representation is on average 235 times faster than the creation process of the baseline.
CITATION STYLE
Alves Gomes, M., Meyes, R., Meisen, P., & Meisen, T. (2022). Will This Online Shopping Session Succeed? Predicting Customer’s Purchase Intention Using Embeddings. In International Conference on Information and Knowledge Management, Proceedings (pp. 2873–2882). Association for Computing Machinery. https://doi.org/10.1145/3511808.3557127
Mendeley helps you to discover research relevant for your work.