Abstract
For central cancer registries to become a more significant public health resource, they must evolve to capture more timely, accurate, and extensive data. Key stakeholders have called for a faster time to deliver work products, data extensions such as social determinants of health, and more relevant information for cancer control programs at the local level. The proposed model consists of near real-time reporting stages to replace the current time and labor-intensive efforts to populate a complete cancer case abstract on the basis of the 12- and 24-month data submission timelines. The first stage collects a cancer diagnosis minimum data set sufficient to describe population incidence and prevalence, which is then followed by a second stage capturing subsequent case updates and treatment data. A third stage procures targeted information in response to identified research projects' needs. The model also provides for further supplemental reports as may be defined to gather additional data. All stages leverage electronic health records' widespread development and the many emerging standards for data content, including national policies related to healthcare and technical standards for interoperability, such as the Fast Healthcare Interoperability Resources specifications to automate and accelerate reporting to central cancer registries. The emergence of application programming interfaces that allow for more interoperability among systems would be leveraged, leading to more efficient information sharing. Adopting this model will expedite cancer data availability to improve cancer control while supporting data integrity and flexibility in data items. It presents a long-term and feasible solution that addresses the extensive burden and unsustainable manual data collection requirements placed on Certified Tumor Registrars at disease reporting entities nationally.
Cite
CITATION STYLE
Wormeli, P., Mazreku, J., Pine, J., & Damesyn, M. (2021). Next Generation of Central Cancer Registries. JCO Clinical Cancer Informatics, (5), 288–294. https://doi.org/10.1200/cci.20.00177
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.