Real-time Functional Analysis of Inertial Microfluidic Devices via Spectral Domain Optical Coherence Tomography

8Citations
Citations of this article
54Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We report the application of spectral-domain optical coherence tomography (SD-OCT) technology that enables real-time functional analysis of sorting microparticles and cells in an inertial microfluidic device. We demonstrated high-speed, high-resolution acquisition of cross-sectional images at a frame rate of 350 Hz, with a lateral resolution of 3 μm and an axial resolution of 1 μm within the microfluidic channel filled with water. We analyzed the temporal sequence of cross-sectional SD-OCT images to determine the position and diameter of microspheres in a spiral microfluidic channel under various flow rates. We used microspheres with known diameters to validate the sub-micrometer precision of the particle size analysis based on a scattering model of spherical microparticles. An additional investigation of sorting live HT-29 cells in the spiral microfluidic channel indicated that the distribution of cells within in the microchannel has a close correspondence with the cells' size distribution. The label-free real-time imaging and analysis of microscale particles in flow offers robustness for practical applications with live cells and allows us to better understand the mechanisms of particle separations in microfluidic sorting systems.

Cite

CITATION STYLE

APA

Dong, B., Chen, S., Zhou, F., Chan, C. H. Y., Yi, J., Zhang, H. F., & Sun, C. (2016). Real-time Functional Analysis of Inertial Microfluidic Devices via Spectral Domain Optical Coherence Tomography. Scientific Reports, 6. https://doi.org/10.1038/srep33250

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free