Predicting Nonlinear Stiffness, Motion Range, and Load-Bearing Capability of Leaf-Type Isosceles-Trapezoidal Flexural Pivot Using Comprehensive Elliptic Integral Solution

5Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A leaf-type isosceles-trapezoidal flexural (LITF) pivot consists of two leaf springs that are situated in the same plane and intersect at a virtual center of motion outside the pivot. The LITF pivot offers many advantages, including large rotation range and monolithic structure. Each leaf spring of a LITF pivot subject to end loads is deflected into an S-shaped configuration carrying one or two inflection points, which is quite difficult to model. The kinetostatic characteristics of the LITF pivot are precisely modeled using the comprehensive elliptic integral solution for the large-deflection problem derived in our previous work, and the strength-checking method is further presented. Two cases are employed to verify the accuracy of the model. The deflected shapes and nonlinear stiffness characteristics within the range of the yield strength are discussed. The load-bearing capability and motion range of the pivot are proposed. The nonlinear finite element results validate the effectiveness and accuracy of the proposed model for LITF pivots.

Cite

CITATION STYLE

APA

Zhang, A., Gou, Y., & Yang, X. (2020). Predicting Nonlinear Stiffness, Motion Range, and Load-Bearing Capability of Leaf-Type Isosceles-Trapezoidal Flexural Pivot Using Comprehensive Elliptic Integral Solution. Mathematical Problems in Engineering, 2020. https://doi.org/10.1155/2020/1390692

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free