A comparative feasibility study of the use of hydrogen produced from surplus wind power for a gas turbine combined cycle power plant

13Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

Abstract

Because of the increasing challenges raised by climate change, power generation from renewable energy sources is steadily increasing to reduce greenhouse gas emissions, especially CO2 . However, this has escalated concerns about the instability of the power grid and surplus power generated because of the intermittent power output of renewable energy. To resolve these issues, this study investigates two technical options that integrate a power-to-gas (PtG) process using surplus wind power and the gas turbine combined cycle (GTCC). In the first option, hydrogen produced using a power-to-hydrogen (PtH) process is directly used as fuel for the GTCC. In the second, hydrogen from the PtH process is converted into synthetic natural gas by capturing carbon dioxide from the GTCC exhaust, which is used as fuel for the GTCC. An annual operational analysis of a 420-MWclass GTCC was conducted, which shows that the CO2 emissions of the GTCC-PtH and GTCC-PtM plants could be reduced by 95.5% and 89.7%, respectively, in comparison to a conventional GTCC plant. An economic analysis was performed to evaluate the economic feasibility of the two plants using the projected cost data for the year 2030, which showed that the GTCC-PtH would be a more viable option.

Cite

CITATION STYLE

APA

Pyo, M. J., Moon, S. W., & Kim, T. S. (2021). A comparative feasibility study of the use of hydrogen produced from surplus wind power for a gas turbine combined cycle power plant. Energies, 14(24). https://doi.org/10.3390/en14248342

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free