Objective: With the rapid growth of high-speed deep-tissue imaging in biomedical research, there is an urgent need to develop a robust and effective denoising method to retain morphological features for further texture analysis and segmentation. Conventional denoising filters and models can easily suppress the perturbative noise in high-contrast images; however, for low photon budget multiphoton images, a high detector gain will not only boost the signals but also bring significant background noise. In such a stochastic resonance imaging regime, subthreshold signals may be detectable with the help of noise, meaning that a denoising filter capable of removing noise without sacrificing important cellular features, such as cell boundaries, is desirable. Method: We propose a convolutional neural network-based denoising autoencoder method-a fully convolutional deep denoising autoencoder (DDAE)-to improve the quality of three-photon fluorescence (3PF) and third-harmonic generation (THG) microscopy images. Results: The average of 200 acquired images of a given location served as the low-noise answer for the DDAE training. Compared with other conventional denoising methods, our DDAE model shows a better signal-to-noise ratio (28.86 and 21.66 for 3PF and THG, respectively), structural similarity (0.89 and 0.70 for 3PF and THG, respectively), and preservation of the nuclear or cellular boundaries (F1-score of 0.662 and 0.736 for 3PF and THG, respectively). It shows that DDAE is a better trade-off approach between structural similarity and preserving signal regions. Conclusions: The results of this study validate the effectiveness of the DDAE system in boundary-preserved image denoising. Clinical Impact: The proposed deep denoising system can enhance the quality of microscopic images and effectively support clinical evaluation and assessment.
CITATION STYLE
Niu, S. Y., Guo, L. Z., Li, Y., Zhang, Z., Wang, T. D., Liu, K. C., … Liu, T. M. (2022). Boundary-Preserved Deep Denoising of Stochastic Resonance Enhanced Multiphoton Images. IEEE Journal of Translational Engineering in Health and Medicine, 10. https://doi.org/10.1109/JTEHM.2022.3206488
Mendeley helps you to discover research relevant for your work.