Wind-Wave-Current Coupled Modeling of the Effect of Artificial Island on the Coastal Environment

2Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

The effect of artificial island on the geomorphologic processes in the coastal area under the coupled hydrodynamics, wave, and sediment transport system is a complicated and multi-scale problem. Studying these dynamic processes will suggest how coastal ecological restoration should be conducted. In this study, a unified, unstructured, gridded coupled hydrodynamics, wave, and sediment transport model and a topographic evolution model were adopted. Based on the field observations of water depth, velocity, suspended sediment concentration, bed sand, and quaternary thickness, a high-spatiotemporal-resolution numerical simulation of the offshore dynamic environment under the disturbance of artificial island was performed, and the accuracy of the calculation was verified. The research showed that the coupling system with an unstructured mesh was able to reproduce the flow and sediment transport processes with acceptable accuracy. The contracted flow zone between the artificial island and the coastline, the runoff and alongshore current from the river, as well as the tidal flow from the ocean, worked together to mold the local complex morphology around the artificial island. The coupled modeling system, supported with parallel computation, can be used to study coastal environments with small-scale wading structures.

Cite

CITATION STYLE

APA

Fu, G., Li, J., Yuan, K., Song, Y., Fu, M., Wang, H., & Wan, X. (2023). Wind-Wave-Current Coupled Modeling of the Effect of Artificial Island on the Coastal Environment. Applied Sciences (Switzerland), 13(12). https://doi.org/10.3390/app13127171

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free