Abstract
Saccharomyces cerevisiae strains lacking the Rad27p nuclease, a homolog of the mammalian FEN-1 protein, display an accumulation of extensive single-stranded G-tails at telomeres. Furthermore, the lengths of telomeric repeats become very heterogeneous. These phenotypes could be the result of aberrant Okazaki fragment processing of the C-rich strand, elongation of the G-rich strand by telomerase, or an abnormally high activity of the nucleolytic activities required to process leading-strand ends. To distinguish among these possibilities, we analyzed strains carrying a deletion of the RAD27 gene and also lacking genes required for in vivo telomerase activity. The results show that double-mutant strains died more rapidly than strains lacking only telomerase components. Furthermore, in such strains there is a significant reduction in the signals for G-tails as compared to those detected in rad27Δ cells. The results from studies of the replication intermediates of a linear plasmid in rad27Δ cells are consistent with the idea that only one end of the plasmid acquires extensive G-tails, presumably the end made by lagging-strand synthesis. These data further support the notion that chromosome ends have differential requirements for end processing, depending on whether the ends were replicated by leading- or lagging-strand synthesis.
Cite
CITATION STYLE
Parenteau, J., & Wellinger, R. J. (2002). Differential processing of leading- and lagging-strand ends at Saccharomyces cerevisiae telomeres revealed by the absence of Rad27p nuclease. Genetics, 162(4), 1583–1594. https://doi.org/10.1093/genetics/162.4.1583
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.