Structural, mineral and elemental composition features of iron-rich saponite clay from tashkiv deposit (Ukraine)

17Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

Low-temperature nitrogen adsorption–desorption isotherms, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, as well as infrared spectroscopy were used to characterize structural features of raw and acid-treated saponite from Tashkiv deposit of Ukraine. It was determined that raw saponite is predominantly composed of trioctahedral saponite with an admixture of dioctahedral nontronite and associated minerals such as quartz, hematite, and anatase. Raw saponite clay was characterized by a high content of iron (19.3%) and titanium (1.1%). Iron is present in the form of hematite particles, isomorphic replacements in octahedral and tetrahedral sheets of a clay structure, or as a charge-balancing cation in the interlayer space. Titanium is homogeneously dispersed as submicrometer anatase particles. The porous structure of both saponite forms consists of micro-meso porous system with narrow slit mesopores dominating. As a consequence of the acid treatment, the specific surface area increased from 47 to 189 m2 g−11, the total pore volume from 0.134 to 0.201 cm3 g−1, and the volume of the micropores increased sevenfold. Using the data of our research allowed us to utilize these mineral resources wisely and to process saponite more efficiently.

Cite

CITATION STYLE

APA

Sokol, H., Sprynskyy, M., Ganzyuk, A., Raks, V., & Buszewski, B. (2019). Structural, mineral and elemental composition features of iron-rich saponite clay from tashkiv deposit (Ukraine). Colloids and Interfaces, 3(1). https://doi.org/10.3390/colloids3010010

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free