Effects of nonstarch genetic modifications on starch structure and properties

6Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

This paper examines if, in maize, starch structure and starch-dependent properties might be altered by pleiotropic effects arising from genetic modifications that are not directly related to starch synthesis. The molecular structure, specifically the starch chain-length distributions (CLDs), of two maize lines transformed with Bar (bialaphos resistance) and Cry1c genes (an artificial gene, encoding proteinaceous insecticidal δ-endotoxins) were compared to those of their control lines. The two transgenes are responsible for herbicidal resistance and insect tolerance, respectively. The starch CLDs were measured by enzymatic debranching and measuring the molecular weight distributions of the resulting linear chains. It was found that although all the lines had similar amylose contents, the CLDs of both amylopectin and amylose for Cry1c were noticeably different from the others, having more short amylopectin and long amylose chains. These CLDs are known to affect functional properties, and indeed it was found that the Cry1c transgenic lines showed a lower gelatinization temperature and faster digestion rate than the control or Bar lines. However, a slower digestion rate is nutritionally desirable. Thus, pleiotropic effects from genetic modifications can indirectly but significantly affect the starch synthesis pathway and thus change functional properties of significance for human health.

Cite

CITATION STYLE

APA

Yu, S., Du, D., Wu, A. C., Bai, Y., Wu, P., Li, C., & Gilbert, R. G. (2020). Effects of nonstarch genetic modifications on starch structure and properties. Foods, 9(2). https://doi.org/10.3390/foods9020222

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free