Phytotoxicity and oxidative stress perspective of two selected nanoparticles in Brassica juncea

79Citations
Citations of this article
43Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

This study elaborates the consequences of oxidative stress caused by copper oxide (CuO) and titanium dioxide (TiO2) nanoparticles (NPs) in Brassica juncea. Effect of these two NPs on plant physiology, reactive oxygen scavenging enzyme system (ascorbate peroxidase, catalase, superoxide dismutase), proline content and lipid peroxidation has been estimated in leaves as well as root tissues. Bioaccumulation of NPs has also been evaluated in the current study and the interrelated cascade of the enzymatic system with H2O2 production was identified. The uptake of NPs in plant leaves was confirmed by scanning electron microscopy, X-ray diffraction, and Fourier Transform Infrared Spectroscopy. Plant growth was found to be diminished with elevated levels of CuO NPs whereas TiO2 NPs had shown an opposite effect. The plant species accumulated lower concentration of NPs and displayed considerable tolerance against stress, probably due to well-organized and coordinated defense system at the root and shoot level by the intonation of antioxidative enzymes.

Cite

CITATION STYLE

APA

Rao, S., & Shekhawat, G. S. (2016). Phytotoxicity and oxidative stress perspective of two selected nanoparticles in Brassica juncea. 3 Biotech, 6(2). https://doi.org/10.1007/s13205-016-0550-3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free