Abstract
A number of recent publications have made use of the incremental output of stochastic parsers to derive measures of high utility for psycholinguistic modeling, following the work of Hale (2001; 2003; 2006). In this paper, we present novel methods for calculating separate lexical and syntactic surprisal measures from a single incremental parser using a lexicalized PCFG. We also present an approximation to entropy measures that would otherwise be intractable to calculate for a grammar of that size. Empirical results demonstrate the utility of our methods in predicting human reading times. © 2009 ACL and AFNLP.
Cite
CITATION STYLE
Roark, B., Bachrach, A., Cardenas, C., & Pallier, C. (2009). Deriving lexical and syntactic expectation-based measures for psycholinguistic modeling via incremental top-down parsing. In EMNLP 2009 - Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: A Meeting of SIGDAT, a Special Interest Group of ACL, Held in Conjunction with ACL-IJCNLP 2009 (pp. 324–333). Association for Computational Linguistics (ACL). https://doi.org/10.3115/1699510.1699553
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.