Intraflagellar transport balances continuous turnover of outer doublet microtubules

  • Marshall W
  • Rosenbaum J
N/ACitations
Citations of this article
16Readers
Mendeley users who have this article in their library.
Get full text

Abstract

A central question in cell biology is how cells determine the size of their organelles. Flagellar length control is a convenient system for studying organelle size regulation. Mechanistic models proposed for flagellar length regulation have been constrained by the assumption that flagella are static structures once they are assembled. However, recent work has shown that flagella are dynamic and are constantly turning over. We have determined that this turnover occurs at the flagellar tips, and that the assembly portion of the turnover is mediated by intraflagellar transport (IFT). Blocking IFT inhibits the incorporation of tubulin at the flagellar tips and causes the flagella to resorb. These results lead to a simple steady-state model for flagellar length regulation by which a balance of assembly and disassembly can effectively regulate flagellar length.

Cite

CITATION STYLE

APA

Marshall, W. F., & Rosenbaum, J. L. (2001). Intraflagellar transport balances continuous turnover of outer doublet microtubules. The Journal of Cell Biology, 155(3), 405–414. https://doi.org/10.1083/jcb.200106141

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free