Small peptide-based GLP-1R ligands: an approach to reduce the kidney uptake of radiolabeled GLP-1R-targeting agents?

2Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Aim: Elevated kidney uptake in insulinoma patients remains a major limitation of radiometallated exendin-derived ligands of the glucagon-like peptide 1 receptor (GLP-1R). Based on the previously published potent GLP-1R-activating undecapeptide 1, short-chained GLP-1R ligands were developed to investigate whether kidney uptake can be reduced by means of direct 18F-labeling (nuclide-based accelerated renal excretion) or the reduction of the overall ligand charge (ligand-based reduced kidney uptake). Materials & methods: GLP-1R ligands were prepared according to optimized standard protocols via solid-phase peptide synthesis (SPPS) or, when not practicable, via fragment coupling in solution. Synthesis of (2‘-Et, 4‘-OMe)4, 4’-L-biphenylalanine ((2′-Et, 4′-OMe)BIP), required for the preparation of 1, was accomplished by Suzuki-Miyaura cross-coupling. In vitro experiments were performed using stably transfected GLP-1R+ HEK293-hGLP-1R cells. Results: In contrast to the three reference ligands glucagon-like peptide 1 (GLP-1, IC50 = 23.2 ± 12.2 nM), [Nle14, Tyr(3-I)40]exendin-4 (IC50 = 7.63 ± 2.78 nM) and [Nle14, Tyr40]exendin-4 (IC50 = 9.87 ± 1.82 nM), the investigated GLP-1R-targeting small peptides (9–15 amino acids), including lead peptide 1, exhibited only medium to low affinities (IC50 > 189 nM). Only SiFA-tagged undecapeptide 5 (IC50 = 189 ± 35 nM) revealed a higher affinity than 1 (IC50 = 669 ± 242 nM). Conclusion: The investigated small peptides, including lead peptide 1, could not compete with favorable in vitro characteristics of glucagon-like peptide 1 (GLP-1), [Nle14, Tyr(3-I)40]exendin-4 and [Nle14, Tyr40]exendin-4. The auspicious EC50 values of 1 provided by the literature could not be transferred to competitive binding experiments. Therefore, the use of 1 as a basic scaffold for the design of further GLP-1R-targeting radioligands cannot be recommended. Further investigations might include the scaffold of 5, although substantial optimizations concerning affinity and lipophilicity would be required. In sum, GLP-1R-targeting radioligands with reduced kidney uptake could not be obtained in this work, which emphasizes the need for further ligands addressing this particular issue.

Cite

CITATION STYLE

APA

Felber, V. B., & Wester, H. J. (2021). Small peptide-based GLP-1R ligands: an approach to reduce the kidney uptake of radiolabeled GLP-1R-targeting agents? EJNMMI Radiopharmacy and Chemistry, 6(1). https://doi.org/10.1186/s41181-021-00136-x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free