Abstract
AAV (adeno-associated virus) vectors are considered to be promising gene-delivery vehicles for gene therapy, because they are derived from non-pathogenic virus, efficiently transduce non-dividing cells, and cause long-term gene expression. Appropriate AAV serotypes are utilized depending on the type of target cells. Among various neurological disorders, Parkinson's disease (PD) is one of the most promising candidates of gene therapy. PD is a progressive neurodegenerative disorder that predominantly affects dopaminergic neurons in the substantia nigra. One of the major approaches to gene therapy of PD is the intrastriatal expression of dopamine (DA)-synthesizing enzyme genes. As for the initial step of clinical application, AAV vector-mediated AADC (aromatic L-amino acid decarboxylase; the enzyme converting L-DOPA to DA) gene transfer in combination with oral administration of L-DOPA would be appropriate, since DA production can be regulated by adjusting the dose of L-DOPA. Second, intramuscular injection of AAV vectors is appropriate to protein-supplement gene therapy. Monogenic diseases such as hemophilia and Fabry disease are suitable candidates. Regarding cancer gene therapy, AAV vectors may be utilized to inhibit tumor angiogenesis, metastasis, and invasion. When long-term transgene expression in stem cells is needed, a therapeutic gene should be introduced with a minimal risk of insertional mutagenesis. To this end, site-specific integration into the AAVS1 locus on the chromosome 19 (19q13.4) by using the integration machinery of AAV would be particularly valuable.
Cite
CITATION STYLE
Ozawa, K. (2007). Gene therapy using AAV. Uirusu. Journal of Virology. https://doi.org/10.2222/jsv.57.47
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.