Abstract
To support the and development and application of the fifth-generation (5G) communication and internet of things (IoT) networks, high data-rate wireless transmission is required. To meet the demand of high data-rate, multiple antennas are equipped at the transmitter and receiver, forming multiple-input multiple-output (MIMO) systems. A big challenge of MIMO is the detector design in correlated noise environments, which should achieve a fine performance with moderate computational complexity. To this end, we employ an iterative framework of a deep convolutional neural network (DCNN) and a linear detector for MIMO systems over correlated noise environments. In this framework, the linear detector can be zero-forcing (ZF), minimum mean square error (MMSE), ZF with successive interference cancellation (ZF-SIC), or MMSE-SIC, which produces an initial estimate of transmitted signals. The DCNN is used to capture the local correlation among noise, and it can produce a more accurate estimate of transmitted signals. Simulation results are finally provided to show that the proposed detector can outperform the conventional linear detectors substantially through capturing the local correlation characteristics among noise.
Author supplied keywords
Cite
CITATION STYLE
He, K., Wang, Z., Huang, W., Deng, D., Xia, J., & Fan, L. (2020). Generic Deep Learning-Based Linear Detectors for MIMO Systems over Correlated Noise Environments. IEEE Access, 8, 29922–29929. https://doi.org/10.1109/ACCESS.2020.2973000
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.