Adaptive sentiment analysis using multioutput classification: a performance comparison

4Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The primary objective of this research is to create a multi-output classification model for sentiment analysis through the combination of 10 algorithms: BernoulliNB, Decision Tree, K-nearest neighbor, Logistic Regression, LinearSVC, Bagging, Stacking, Random Forest, AdaBoost, and ExtraTrees. In doing so, we aim to identify the optimal algorithm performance and role within the model. The data utilized in this study is derived from customer reviews of cryptocurrencies in Indonesia. Our results indicate that LinearSVC and Stacking exhibit a high accuracy (90%) compared to the other eight algorithms. The resulting multi-output model demonstrates an average accuracy of 88%, which can be considered satisfactory. This research endeavors to innovate in adaptive sentiment analysis classification by developing a multi-output model that utilizes a combination of 10 classification algorithms

Cite

CITATION STYLE

APA

Hariguna, T., & Ruangkanjanases, A. (2023). Adaptive sentiment analysis using multioutput classification: a performance comparison. PeerJ Computer Science, 9. https://doi.org/10.7717/peerj-cs.1378

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free