Abstract
Many studies have shown that microRNA regulates the development and treatment of osteosarcoma (OS). In many human cancer studies, the expression of microRNA-202 has been shown to be abnormal. The aim of the study was to examine the role of miR-202-5p in the occurrence and formation of OS. miR-202-5p and Rho-associated coiled-coil containing protein kinase 1 (ROCK1) levels were assessed using RT-qPCR in OS tissues and cell lines. The cell migrating and invasive abilities were detected by the Transwell assay in OS. Moreover, the relationship between miR-202-5p and ROCK1 was verified via luciferase reporter assay. The protein level of ROCK1 was identified by western blot analysis. Downregulation of miR-202-5p was identified in OS tissues and cell lines. In addition, the miR-202-5p overexpression had inhibitory action for cell migration and invasion in OS. Moreover, miR-202-5p directly targeted ROCK1 and negatively regulated its expression. Upregulation of ROCK1 had a carcinogenic effect in OS. Furthermore, the upregulation of ROCK1 restored the suppressive effect of miR-202-5p. miR-202-5p, in turn, weakened the abilities of cell migration and invasion in OS by inhibiting ROCK1 expression. As a result, miR-202-5p may be developed as a potential pathway in the reatment of OS.
Author supplied keywords
Cite
CITATION STYLE
Li, C., Ma, D., Yang, J., Lin, X., & Chen, B. (2018). miR-202-5p inhibits the migration and invasion of osteosarcoma cells by targeting ROCK1. Oncology Letters, 16(1), 829–834. https://doi.org/10.3892/ol.2018.8694
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.