Abstract
Triggering transformation induced plasticity (TRIP) and twinning induced plasticity (TWIP) mechanisms in metastable β titanium alloys (bcc, body centered cubic) have helped reaching unprecedented mechanical properties for Ti-alloys, including high ductility and work-hardening. Yet the yield strength of such alloys generally remains rather low. So far, mostly single-phase metastable bcc alloys have been developed. In this study, a dual phase TRIP/TWIP alloy is designed and investigated. While the β-matrix is expected to display TRIP/TWIP deformation mechanisms, the addition of a second phase, α in the present study, aims at increasing the yield strength. The composition was designed in the Ti-Cr-Sn system, based on Calphad prediction and on the semi-empirical d -electron alloy design approach. Results were compared to the published full β Ti – 8.5Cr – 1.5Sn (wt%) TRIP/TWIP alloy. The dual-phase alloy was prepared and processed to reach the desired microstructure containing about 20% α. It displays remarkable mechanical properties such as a ductility of 29%, an ultimate tensile strength of 1200 MPa and a yield strength of 760 MPa, 200MPa higher than the Reference single-phase β alloy. Analysis of the mechanical properties and deformation microstructures confirm the TRIP and TWIP effects, validating the proposed approach.
Cite
CITATION STYLE
Lilensten, L., Danard, Y., Sun, F., Vermaut, P., Perrière, L., Joubert, J.-M., & Prima, F. (2020). Design and development of a dual-phase TRIP-TWIP alloy for enhanced mechanical properties. MATEC Web of Conferences, 321, 11014. https://doi.org/10.1051/matecconf/202032111014
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.