Elastic instabilities, when properly implemented within soft, mechanical structures, can generate advanced functionality. In this work, we use the voltage-induced buckling of thin, flexible plates to pump fluids within a microfluidic channel. The soft electrodes that enable electrical actuation are compatible with fluids, and undergo large, reversible deformations. We quantified the onset of voltage-induced buckling, and measured the flow rate within the microchannel. This embeddable, flexible microfluidic pump will aid in the generation of new stand-alone microfluidic devices that require a tunable flow rate. © 2014 the Partner Organisations.
CITATION STYLE
Tavakol, B., Bozlar, M., Punckt, C., Froehlicher, G., Stone, H. A., Aksay, I. A., & Holmes, D. P. (2014). Buckling of dielectric elastomeric plates for soft, electrically active microfluidic pumps. Soft Matter, 10(27), 4789–4794. https://doi.org/10.1039/c4sm00753k
Mendeley helps you to discover research relevant for your work.