Abstract
Our aim was to investigate the feasibility of a three-dimensional (3D) -printed head-and-neck (HN) immobilization device by comparing its positional accuracy and dosimetric properties with those of a conventional immobilization device (CID). We prepared a 3D-printed immobilization device (3DID) consisting of a mask and headrest with acrylonitrile-butadiene-styrene resin developed from the computed tomography data obtained by imaging a HN phantom. For comparison, a CID comprising a thermoplastic mask and headrest was prepared using the same HN phantom. We measured the setup error using the ExacTrac X-ray image system. Furthermore, using the ionization chamber and the water-equivalent phantom, we measured the changes in the dose due to the difference in the immobilization device material from the photon of 4 MV and 6 MV. The positional accuracy of the two devices were almost similar in each direction except in the vertical, lateral, and pitch directions (t-test, p<0.0001), and the maximum difference was 1 mm, and 1°. The standard deviations were not statistically different in each direction except in the longitudinal (F-test, p=0.034) and roll directions (F-test, p<0.0001). When the thickness was the same, the dose difference was almost similar at a 50 mm depth. At a 1 mm depth, the 3DID-plate had a 2.9-4.2% lower dose than the CID-plate. This study suggested that the positional accuracy and dosimetric properties of 3DID were almost similar to those of CID.
Cite
CITATION STYLE
Sato, K., Takeda, K., Dobashi, S., Kadoya, N., Ito, K., Chiba, M., … Jingu, K. (2017). Evaluation of the Positional Accuracy and Dosimetric Properties of a Three-dimensional Printed Device for Head and Neck Immobilization. Japanese Journal of Radiological Technology, 73(1), 57–65. https://doi.org/10.6009/jjrt.2017_jsrt_73.1.57
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.