Modeling High-Grade Serous Ovarian Carcinoma Using a Combination of in Vivo Fallopian Tube Electroporation and CRISPR-Cas9–Mediated Genome Editing

17Citations
Citations of this article
43Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Ovarian cancer is the most lethal gynecologic cancer to date. High-grade serous ovarian carcinoma (HGSOC) accounts for most ovarian cancer cases, and it is most frequently diagnosed at advanced stages. Here, we developed a novel strategy to generate somatic ovarian cancer mouse models using a combination of in vivo electroporation and CRISPR-Cas9–mediated genome editing. Mutation of tumor suppressor genes associated with HGSOC in two different combinations (Brca1, Tp53, Pten with and without Lkb1) resulted in successfully generation of HGSOC, albeit with different latencies and pathophysiology. Implementing Cre lineage tracing in this system enabled visualization of peritoneal micrometastases in an immune-competent environment. In addition, these models displayed copy number alterations and phenotypes similar to human HGSOC. Because this strategy is flexible in selecting mutation combinations and targeting areas, it could prove highly useful for generating mouse models to advance the understanding and treatment of ovarian cancer.

Cite

CITATION STYLE

APA

Teng, K., Ford, M. J., Harwalkar, K., Li, Y. Q., Pacis, A. S., Farnell, D., … Yamanaka, Y. (2021). Modeling High-Grade Serous Ovarian Carcinoma Using a Combination of in Vivo Fallopian Tube Electroporation and CRISPR-Cas9–Mediated Genome Editing. Cancer Research, 81(20), 5147–5160. https://doi.org/10.1158/0008-5472.CAN-20-1518

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free