Radiation effects in ultra-thin GaAs solar cells

8Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

Abstract

Ultra-thin solar cells are of significant interest for use in space due to their intrinsic radiation tolerance, which may allow them to be used in particularly harsh radiation environments, where thicker cells would degrade rapidly and enable reduction in cover glass thickness to reduce launch mass. In this study, devices with an 80 nm GaAs absorber layer were irradiated with 3 MeV protons. It is shown that integrated light management in these ultra-thin devices offers enhanced efficiency, in addition to extended lifetime through radiation resilience. Time-resolved cathodoluminescence is employed to map the introduction of radiation-induced defects with increasing proton fluence and characterize a decrease in carrier lifetime from 198 ± 5 ps pre-radiation to 6.2 ± 0.6 ps, after irradiation to 2 × 10 14 c m - 2 fluence. Despite the substantial reduction in carrier lifetime, short-circuit current does not degrade up to a proton fluence of 1 × 10 15 cm - 2, beyond which a collapse in short-circuit current is observed. This exposure correlates with the point at which the carrier lifetime, extrapolated from cathodoluminescence, becomes comparable to the transit time for carriers to cross the ultra-thin device. Variation in current-voltage behavior with carrier lifetime and fluence shows that the recombination statistics are similar to those of a Shockley-Read-Hall single deep-level trap model, but that bimolecular recombination does not fully describe the observed behavior. An implication of these highly radiation tolerant cells for space power systems is shown to offer significant savings in cover glass mass, compared with a thicker cell.

Cite

CITATION STYLE

APA

Barthel, A., Sayre, L., Kusch, G., Oliver, R. A., & Hirst, L. C. (2022). Radiation effects in ultra-thin GaAs solar cells. Journal of Applied Physics, 132(18). https://doi.org/10.1063/5.0103381

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free