A Synthetic Material to Simulate Soft Rocks and Its Applications for Model Studies of Socketed Piles

9Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A detailed manufacturing procedure of a synthetic soft rock is presented, as well as its applications on the laboratory experiments of socketed piles. With the homogeneity and isotropy of the simulated soft rock, the influence of different variables on the bearing performance could be investigated independently. The constituents, cement, gypsum powder, river sand, concrete-hardening accelerator, and water, were mixed to form the specimens. Both uniaxial and triaxial compressive tests were conducted to investigate the stress-strain behavior of the simulated soft rock. Additionally, the simulated soft rock specimens were used in model pile tests and simple shear tests of the pile-rock interface. Results of the simulated soft rock in both the uniaxial and triaxial compressive tests are consistent with those of natural soft rocks. The concrete-hardening accelerator added to the mixtures improves the efficiency in laboratory investigations of soft rock specimens with a curing time of 7 days. The similarities between the laboratory tests and the field observations provide convincing evidence to support its suitability in modeling the behavior of soft rocks.

Cite

CITATION STYLE

APA

Mei, C., Fang, Q., Luo, H., Yin, J., & Fu, X. (2017). A Synthetic Material to Simulate Soft Rocks and Its Applications for Model Studies of Socketed Piles. Advances in Materials Science and Engineering, 2017. https://doi.org/10.1155/2017/1565438

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free