Prediction of Financial Time Series Based on LSTM Using Wavelet Transform and Singular Spectrum Analysis

27Citations
Citations of this article
50Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In order to further overcome the difficulties of the existing models in dealing with the nonstationary and nonlinear characteristics of high-frequency financial time series data, especially their weak generalization ability, this paper proposes an ensemble method based on data denoising methods, including the wavelet transform (WT) and singular spectrum analysis (SSA), and long-term short-term memory neural network (LSTM) to build a data prediction model. The financial time series is decomposed and reconstructed by WT and SSA to denoise. Under the condition of denoising, the smooth sequence with effective information is reconstructed. The smoothing sequence is introduced into LSTM and the predicted value is obtained. With the Dow Jones industrial average index (DJIA) as the research object, the closing price of the DJIA every five minutes is divided into short term (1 hour), medium term (3 hours), and long term (6 hours), respectively. Based on root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and absolute percentage error standard deviation (SDAPE), the experimental results show that in the short term, medium term, and long term, data denoising can greatly improve the stability of the prediction and can effectively improve the generalization ability of LSTM prediction model. As WT and SSA can extract useful information from the original sequence and avoid overfitting, the hybrid model can better grasp the sequence pattern of the closing price of the DJIA.

Cite

CITATION STYLE

APA

Tang, Q., Shi, R., Fan, T., Ma, Y., & Huang, J. (2021). Prediction of Financial Time Series Based on LSTM Using Wavelet Transform and Singular Spectrum Analysis. Mathematical Problems in Engineering, 2021. https://doi.org/10.1155/2021/9942410

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free