An accurate and efficient Ehrenfest dynamics approach for calculating linear and nonlinear electronic spectra

6Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Linear and nonlinear electronic spectra provide an important tool to probe the absorption and transfer of electronic energy. Here, we introduce a pure state Ehrenfest approach to obtain accurate linear and nonlinear spectra that is applicable to systems with large numbers of excited states and complex chemical environments. We achieve this by representing the initial conditions as sums of pure states and unfolding multi-time correlation functions into the Schrödinger picture. By doing this, we show that one can obtain significant improvements in accuracy over the previously used projected Ehrenfest approach and that these benefits are particularly pronounced in cases where the initial condition is a coherence between excited states. While such initial conditions do not arise when calculating linear electronic spectra, they play a vital role in capturing multidimensional spectroscopies. We demonstrate the performance of our method by showing that it is able to quantitatively capture the exact linear, 2D electronic spectroscopy, and pump-probe spectra for a Frenkel exciton model in slow bath regimes and is even able to reproduce the main spectral features in fast bath regimes.

Cite

CITATION STYLE

APA

Atsango, A. O., Montoya-Castillo, A., & Markland, T. E. (2023). An accurate and efficient Ehrenfest dynamics approach for calculating linear and nonlinear electronic spectra. Journal of Chemical Physics, 158(7). https://doi.org/10.1063/5.0138671

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free