Prediction of B-cell epitopes using evolutionary information and propensity scales

42Citations
Citations of this article
55Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Development of computational tools that can accurately predict presence and location of B-cell epitopes on pathogenic proteins has a valuable application to the field of vaccinology. Because of the highly variable yet enigmatic nature of B-cell epitopes, their prediction presents a great challenge to computational immunologists. Methods: We propose a method, BEEPro (B-cell epitope prediction by evolutionary information and propensity scales), which adapts a linear averaging scheme on 16 properties using a support vector machine model to predict both linear and conformational B-cell epitopes. These 16 properties include position specific scoring matrix (PSSM), an amino acid ratio scale, and a set of 14 physicochemical scales obtained via a feature selection process. Finally, a three-way data split procedure is used during the validation process to prevent over-estimation of prediction performance and avoid bias in our experiment results. Results: In our experiment, first we use a non-redundant linear B-cell epitope dataset curated by Sollner et al. for feature selection and parameter optimization. Evaluated by a three-way data split procedure, BEEPro achieves significant improvement with the area under the receiver operating curve (AUC) = 0.9987, accuracy = 99.29%, mathew's correlation coefficient (MCC) = 0.9281, sensitivity = 0.9604, specificity = 0.9946, positive predictive value (PPV) = 0.9042 for the Sollner dataset. In addition, the same parameters are used to evaluate performance on other independent linear B-cell epitope test datasets, BEEPro attains an AUC which ranges from 0.9874 to 0.9950 and an accuracy which ranges from 93.73% to 97.31%. Moreover, five-fold cross-validation on one benchmark conformational B-cell epitope dataset yields an accuracy of 92.14% and AUC of 0.9066. Conclusions: Compared with other current models, our method achieves a significant improvement with respect to AUC, accuracy, MCC, sensitivity, specificity, and PPV. Thus, we have shown that an appropriate combination of evolutionary information and propensity scales with a support vector machine model can significantly enhance the prediction performance of both linear and conformational B-cell epitopes.

Cite

CITATION STYLE

APA

Lin, S. Y. H., Cheng, C. W., & Su, E. C. Y. (2013). Prediction of B-cell epitopes using evolutionary information and propensity scales. BMC Bioinformatics, 14. https://doi.org/10.1186/1471-2105-14-S2-S10

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free