Measurements are presented of the structural response and wake of a two-degree-of-freedom (2-DOF) pivoted cylinder undergoing streamwise vortex-induced vibrations (VIV), which were carried out using particle-image velocimetry (PIV). The results are compared with those of previous studies performed in the same experimental facility examining a cylinder free to move only in the streamwise direction (1-DOF). The aim of this study is to examine to what extent the results of previous work on streamwise-only VIV can be extrapolated to the more practical, multi-DOF case. The response regimes measured for the 1- and 2-DOF cases are similar, containing two response branches separated by a low-amplitude region. The first branch is characterised by negligible transverse motion and the appearance of both alternate and symmetric vortex shedding. The two wake modes compete in an unsteady manner; however, the competition does not appear to have a significant effect on either the streamwise or transverse motion. Comparison of the phase-averaged vorticity fields acquired in the second response branch also indicates that the additional DOF does not alter the vortex-shedding process. However, the additional DOF affects the cylinder-wake system in other ways; for the 1-DOF case the second branch can appear in three different forms (each associated with a different wake mode), while for the 2-DOF case the second branch only exists in one form, and does not exhibit hysteresis. The cylinder follows a figure-of-eight trajectory throughout the lock-in range. The phase angle between the streamwise and transverse motion decreases linearly with reduced velocity. This work highlights the similarities and differences between the fluid-structure interaction and wake dynamics associated with 1- and 2-DOF cylinders throughout the streamwise response regime, which has not received attention to date.
CITATION STYLE
Cagney, N., & Balabani, S. (2014). Streamwise vortex-induced vibrations of cylinders with one and two degrees of freedom. Journal of Fluid Mechanics, 758, 702–727. https://doi.org/10.1017/jfm.2014.521
Mendeley helps you to discover research relevant for your work.