Stem cells are undifferentiated cells that can give rise to any types of cells in our body. Hence, they have been utilized for various applications, such as drug testing and disease modeling. However, for the successful of those applications, the survival and differentiation of stem cells into specialized lineages should be well controlled. Growth factors and chemical agents are the most common signals to promote the proliferation and differentiation of stem cells. However, those approaches holds several drawbacks such as the negative side effects, degradation or denaturation, and expensive. To address such limitations, nanomaterials have been recently used as a better approach for controlling stem cells behaviors. Graphene oxide is the derivative of graphene, the first two-dimensional (2D) materials in the world. Recently, due to its extraordinary properties and great biological effects on stem cells, many scientists around the world have utilized graphene oxide to enhance the differentiation potential of stem cells. In this mini review, we highlight the key advances about the effects of graphene oxide on controlling stem cell growth and various types of stem cell differentiation. We also discuss the possible molecular mechanisms of graphene oxide in controlling stem cell growth and differentiation.
CITATION STYLE
Halim, A., Luo, Q., Ju, Y., & Song, G. (2018, September 18). A mini review focused on the recent applications of graphene oxide in stem cell growth and differentiation. Nanomaterials. MDPI AG. https://doi.org/10.3390/nano8090736
Mendeley helps you to discover research relevant for your work.