Abstract
• Plant invasion potentially alters ecosystem carbon (C) and nitrogen (N) cycles. However, the overall direction and magnitude of such alterations are poorly quantified. • Here, 94 experimental studies were synthesized, using a meta-analysis approach, to quantify the changes of 20 variables associated with C and N cycles, including their pools, fluxes, and other related parameters in response to plant invasion. • Pool variables showed significant changes in invaded ecosystems relative to native ecosystems, ranging from a 5% increase in root carbon stock to a 133% increase in shoot C stock. Flux variables, such as above-ground net primary production and litter decomposition, increased by 50-120% in invaded ecosystems, compared with native ones. Plant N concentration, soil and concentrations were 40, 30 and 17% higher in invaded than in native ecosystems, respectively. Increases in plant production and soil N availability indicate that there was positive feedback between plant invasion and C and N cycles in invaded ecosystems. • Invasions by woody and N-fixing plants tended to have greater impacts on C and N cycles than those by herbaceous and nonN-fixing plants, respectively. The responses to plant invasion are not different among forests, grasslands, and wetlands. All of these changes suggest that plant invasion profoundly influences ecosystem processes. © The Authors (2007).
Author supplied keywords
Cite
CITATION STYLE
Liao, C., Peng, R., Luo, Y., Zhou, X., Wu, X., Fang, C., … Li, B. (2008). Altered ecosystem carbon and nitrogen cycles by plant invasion: A meta-analysis. New Phytologist, 177(3), 706–714. https://doi.org/10.1111/j.1469-8137.2007.02290.x
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.