To deal with complicated decision problems with T-Spherical fuzzy values in the aggregation process, T-Spherical fuzzy Bonferroni mean operators are developed by extending the Bonferroni mean and Dombi mean to a T-Spherical fuzzy environment. The T-spherical fuzzy interaction Bonferroni mean operator and the T-spherical fuzzy interaction geometric Bonferroni mean operator are first defined. Then, the T-spherical fuzzy interaction weighted Bonferroni mean operator and the T-spherical fuzzy weighted interaction geometric Bonferroni mean operator are defined. Based on the Dombi mean and the Bonferroni mean operator, some T-Spherical fuzzy Dombi Bonferroni mean operators are proposed, including the T-spherical fuzzy Dombi Bonferroni mean operator, T-spherical fuzzy geometric Dombi Bonferroni mean operator, T-spherical fuzzy weighted Dombi Bonferroni mean operator and the T-spherical fuzzy weighted geometric Dombi Bonferroni mean operator. The properties of these proposed operators are studied. An attribute weight determining method based on the T-spherical fuzzy entropy and symmetric T-spherical fuzzy cross-entropy is developed. A new decision making method based on the proposed T-Spherical fuzzy Bonferroni mean operators is proposed for partly known or completely unknown attribute weight situations. The furniture procurement problem is presented to illustrate the new algorithm, and some comparisons are made.
CITATION STYLE
Yang, W., & Pang, Y. (2022). T-Spherical Fuzzy Bonferroni Mean Operators and Their Application in Multiple Attribute Decision Making. Mathematics, 10(6). https://doi.org/10.3390/math10060988
Mendeley helps you to discover research relevant for your work.