Abstract
In this paper, we present a new type of cellular nonlinear network (CNN) model and FPGA implementation of cellular nonlinear network universal machine. Our approach uses stochastic bitstreams as data carriers. With the help of stochastic data streams more complex nonlinear cell interactions can be realized than conventional CNN hardware implementations have. The accuracy as indexed by bit depth resolution can be improved at the expense of computation time without influencing hardware complexity. Our simulation results prove the universality and utility of the model. Our experimental results show that the proposed model can be implemented on an FPGA hardware. Copyright © 2008 John Wiley and Sons, Ltd.
Author supplied keywords
Cite
CITATION STYLE
Rák, Á., Soós, B. G., & Cserey, G. (2009). Stochastic bitstream-based CNN and its implementation on FPGA. International Journal of Circuit Theory and Applications, 37(4), 587–612. https://doi.org/10.1002/cta.569
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.