Residual Shear Capacity of RC Beams without Stirrups after Fire Exposure

2Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

To investigate the shear capacity and failure mechanism of RC beams after fire exposure, fourteen full-scale beams without stirrups were tested at ambient temperature and after fire exposure. Three parameters, including the loading ratio, shear span-to-depth ratio and longitudinal reinforcement ratio, were considered in static load tests. The deterioration mechanism of the shear bearing capacity at the diagonal section of RC beams without stirrups after fire exposure was experimentally, numerically and theoretically revealed, and a calculation formula for the shear capacity of post-fire beams without stirrups was proposed. The results show that the shear capacity and stiffness of the specimens decreased after fire exposure, and the shear strength loss of the beams increased with fire exposure time. The shear capacity and stiffness of fire-damaged specimens decreased as the shear span ratio λ increased, and the shear strength loss of the beams decreased with λ. Compared with the theoretical calculation and experimental results of beams without stirrups, the average of the absolute errors was 10.48%. Therefore, this formula can better calculate the residual shear capacity of beam without stirrups after fire exposure.

Cite

CITATION STYLE

APA

Song, Y., Fu, C., & Liang, S. (2022). Residual Shear Capacity of RC Beams without Stirrups after Fire Exposure. Buildings, 12(10). https://doi.org/10.3390/buildings12101706

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free