Abstract
Zeolite catalysts that could allow the efficient synthesis of n-butene, such as 1-butene, trans-2-butene, and cis-2-butene, in the dimethyl ether (DME)-to-olefin (DTO) reaction were investigated using a fixed-bed flow reactor. The zeolites were characterized by N2 adsorption and de-sorption, X-ray diffraction (XRD), thermogravimetry (TG), and NH3 temperature-programmed de-sorption (NH3-TPD). A screening of ten available zeolites indicated that the ferrierite zeolite with NH4+ as the cation showed the highest n-butene yield. The effect of the temperature of calcination as a pretreatment method on the catalytic performance was studied using three zeolites with suita-ble topologies. The calcination temperature significantly affected DME conversion and n-butene yield. The ferrierite zeolite showed the highest n-butene yield at a calcination temperature of 773 K. Multiple regression analysis was performed to determine the correlation between the six values obtained using N2 adsorption/desorption and NH3-TPD analyses, and the n-butene yield. The contribution rate of the strong acid site alone as an explanatory variable was 69.9%; however, the addi-tion of micropore volume was statistically appropriate, leading to an increase in the contribution rate to 76.1%. Insights into the mechanism of n-butene synthesis in the DTO reaction were obtained using these parameters.
Author supplied keywords
Cite
CITATION STYLE
Hanaoka, T., Aoyagi, M., & Edashige, Y. (2021). N-butene synthesis in the dimethyl ether-to-olefin reaction over zeolites. Catalysts, 11(6). https://doi.org/10.3390/catal11060743
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.