Abstract
This study describes the development and optimization of an immunomagnetic separation (IMS) method to isolate Mycobacterium bovis cells from lymph node tissues. Gamma-irradiated whole M. bovis AF2122/97 cells and ethanol-extracted surface antigens of such cells were used to produce M. bovis-specific polyclonal and monoclonal antibodies in rabbits and mice. They were also used to generate M. bovis-specific peptide ligands by phage display biopanning. The various antibodies and peptide ligands obtained were used to coat MyOne tosyl-activated Dynabeads (Life Technologies), singly or in combination, and evaluated for IMS. Initially, M. bovis capture from Middlebrook 7H9 broth suspensions (concentration range, 10 to 10 5 CFU/ml) was evaluated by IMS combined with an M. bovis-specific touchdown PCR. IMS-PCR results and, subsequently, IMS-culture results indicated that the beads with greatest immunocapture capability for M. bovis in broth were those coated simultaneously with a monoclonal antibody and a biotinylated 12-mer peptide. These dually coated beads exhibited minimal capture (mean of 0.36% recovery) of 12 other Mycobacterium spp. occasionally encountered in veterinary tuberculosis (TB) diagnostic laboratories. When the optimized IMS method was applied to various M. bovis-spiked lymph node matrices, it demonstrated excellent detection sensitivities (50% limits of detection of 3.16 and 57.7 CFU/ml of lymph node tissue homogenate for IMS-PCR and IMS-culture, respectively). The optimized IMS method therefore has the potential to improve isolation of M. bovis from lymph nodes and hence the diagnosis of bovine tuberculosis. Copyright © 2012, American Society for Microbiology. All Rights Reserved.
Cite
CITATION STYLE
Stewart, L. D., McNair, J., McCallan, L., Thompson, S., Kulakov, L. A., & Grant, I. R. (2012). Production and evaluation of antibodies and phage display-derived peptide ligands for immunomagnetic separation of Mycobacterium bovis. Journal of Clinical Microbiology, 50(5), 1598–1605. https://doi.org/10.1128/JCM.05747-11
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.