Abstract
Insulin promotes the cardiovascular protective functions of the endothelium including NO production by endothelial NO synthase (eNOS), which it stimulates via Akt kinase which phosphorylates eNOS Ser1179. C-reactive protein (CRP) is an acute-phase reactant that is positively correlated with cardiovascular disease risk in patients with type 2 diabetes. We previously showed that CRP inhibits eNOS activation by insulin by blunting Ser1179 phosphorylation. We now elucidate the underlying molecular mechanisms. We first show in mice that CRP inhibits insulin-induced eNOS phosphorylation, indicating that these processes are operative in vivo. In endothelial cells we find that CRP attenuates insulin-induced Akt phosphorylation, and CRP antagonism of eNOS is negated by expression of constitutively active Akt; the inhibitory effect of CRP on Akt is also observed in vivo. A requirement for the IgG receptor FcγRIIB was demonstrated in vitro using blocking antibody, and reconstitution experiments with wild-type and mutant FcγRIIB in NIH3T3 cells revealed that these processes require the ITIM (immunoreceptor tyrosine-based inhibition motif) of the receptor. Furthermore, we find that endothelium express SHIP-1 (Src homology 2 domain-containing inositol 5′-phosphatase 1), that CRP induces SHIP-1 stimulatory phosphorylation in endothelium in culture and in vivo, and that SHIP-1 knockdown by small interfering RNA prevents CRP antagonism of insulin-induced eNOS activation. Thus, CRP inhibits eNOS stimulation by insulin via FcγRIIB and its ITIM, SHIP-1 activation, and resulting blunted activation of Akt. These findings provide mechanistic linkage among CRP, impaired insulin signaling in endothelium, and greater cardiovascular disease risk in type 2 diabetes. © 2009 American Heart Association, Inc.
Author supplied keywords
Cite
CITATION STYLE
Tanigaki, K., Mineo, C., Yuhanna, I. S., Chambliss, K. L., Quon, M. J., Bonvini, E., & Shaul, P. W. (2009). C-reactive protein inhibits insulin activation of endothelial nitric oxide synthase via the immunoreceptor tyrosine-based inhibition motif of FcγRIIB and SHIP-1. Circulation Research, 104(11), 1275–1282. https://doi.org/10.1161/CIRCRESAHA.108.192906
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.