Abstract
The essential Saccharomyces cerevisiae PRP43 gene encodes a 767-amino acid protein of the DEXH-box family. Prp43 has been implicated in spliceosome disassembly (Arenas, J. E., and Abelson, J. N. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 11798-11802). Here we show that purified recombinant Prp43 is an RNA-dependent ATPase. Alanine mutations at conserved residues within motifs I (119GSGKT123), II (215DEAH218) and VI (423QRAGRAGR430) that diminished ATPase activity in vitro were lethal in vivo, indicating that ATP hydrolysis is necessary for the biological function of Prp43. Overexpression of lethal, ATPase-defective mutants in a wild-type strain resulted in dominant-negative growth inhibition. The ATPase-defective mutant T123A interfered in trans with the in vitro splicing function of wild-type Prp43. T123A did not affect the chemical steps of splicing or the release of mature mRNA from the spliceosome, but it blocked the release of the excised lariat-intron from the spliceosome. We show that the lariat-intron is not accessible to debranching by purified Dbr1 when it is held in the T123A-arrested splicing complex. Our results define a new ATP-dependent step of splicing that is catalyzed by Prp43.
Cite
CITATION STYLE
Martin, A., Schneider, S., & Schwer, B. (2002). Prp43 is an essential RNA-dependent ATPase required for release of lariat-intron from the spliceosome. Journal of Biological Chemistry, 277(20), 17743–17750. https://doi.org/10.1074/jbc.M200762200
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.